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Abstract

We report on the self-catalyzed growth of InAs nanowires on InP substrate by metal-organic chemical vapor
deposition. At a moderate V/III ratio, tapered nanowires are obtained, suggesting a strong surface diffusion effect.
Dense twin faults are observed perpendicular to the nanowire growth direction due to the fluctuation of In atoms
in the droplet originating from the surface diffusion effect. At a lower V/III ratio, the nanowires exhibit kinking,
which is associated with a high adhesion due to a large sticking coefficient of TMIn. The twin faults are dramatically
suppressed and even completely eliminated in the NW branch after kinking, which is attributed to a stable In
supply with a negligible diffusion effect. This work provides a method for the fabrication of defect-free InAs
nanowires.
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Background
Recently, III/V nanowires (NWs) have attracted increas-
ing attention for their potential applications in future
devices [1–7]. High-performance NW devices require
high quality NWs with controlled morphology and per-
fect crystal phase. For example, NW solar cells with uni-
form diameter achieve high conversion efficiency [8].
High-speed field effect transistors require twin-faults-
free NWs avoiding from electron trapping [9]. InAs
NWs are particularly promising for high-performance
electronic and optoelectronic devices due to the high
electron mobility and broad spectra response. However,
the control of the morphology and crystal phase of InAs
NWs still remains a challenge. Particularly, stacking
faults and twin defects are commonly observed in InAs
NWs, which dramatically limit their applications in
high-performance devices [10, 11]. Up to date, defect-
free III-V NWs have been mainly obtained by control-
ling the growth conditions, varying the catalyst size, as
well as changing the substrate orientation [12–14].
Besides, single-crystalline crystal structure has also
been obtained in tilted or kinked NWs. For example,
tilted Ge, ZnSe, and GaAs NWs have been reported
to be SFs-free [15–17]. Pure zincblende (ZB) phase

has been obtained in GaAs, InP, and Ge NWs after
kinking [18–21]. The tilted or kinked NWs typically
have a low-index orientation, which favors pure ZB
phase. However, the research on tilted or kinked InAs
NWs is still limited. Moreover, most of the reported
InAs NWs are grown via Au-catalyzed method, which
may lead to an unintentional Au contamination and
degrade the device performance. In this paper, we
demonstrate the growth of InAs NWs on InP sub-
strate by self-catalyzed growth method. NWs are
grown under different temperature and V/III ratio.
Twin-free NWs are obtained via a spontaneous kink-
ing, and the related mechanism is discussed.

Methods
The growth was carried out in a Thomas Swan close-
coupled showerhead-metal-organic chemical vapor de-
position (CCS-MOCVD) reactor at the pressure of
100 Torr. Before NW growth, an InP (111)B substrate
was placed in the reactor and annealed in situ at 645 °C
in phosphine ambient for desorption of surface contami-
nants. Trimethylindium (TMIn) and arsine (AsH3) were
used as precursors. Hydrogen served as the carrier gas.
In droplets were formed by switching off PH3 and de-
positing TMIn for 45 s at 390 °C. Then, TMIn precursor
was switched off for 10 s of soak time. InAs NWs
growth began when TMIn and AH3 were introduced
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again into the reaction chamber simultaneously. The in-
put V/III ratio was adjusted by varying the AsH3 flow
while keeping the TMIn flow constant at 32 μmol/min.
After growth, the samples were cooled down in H2

ambient. Four samples were grown in the experiment.
Samples A, B, and C were grown for 900 s at a V/III
ratio of 35 and growth temperature of 420, 400, and
380 °C, respectively. Sample D was grown for 900 s at a
V/III ratio of 18 and growth temperature of 380 °C.
The morphological and structural characteristics of

the samples were characterized by scanning electron
microscopy (SEM) and transmission electron micros-
copy (TEM). Individual NWs for TEM observations
were prepared by ultrasonicating the samples in ethanol
for 5 min, followed by spreading drops from the suspen-
sion onto a holey carbon/Cu grid.

Results and Discussion
Figure 1a–c shows the cross-sectional SEM images of
samples A, B, and C, respectively. All the NWs are verti-
cal to the substrate, suggesting the <111> growth direc-
tion. Tapering is observed in all the three samples,
indicative of the adatom diffusion during the NW
growth. In comparison with sample C, samples A and B
grown at higher temperature are more tapered, which is
attributed to an enhanced diffusion of In adatoms from
the substrate to the droplet [22]. The average length of
NWs for samples A, B, and C is 0.63, 1.26, and 2.62 μm,
corresponding to a growth rate of 0.7, 1.4, and 2.9 nm/s,
respectively. The decreased growth rate with the in-
creasing temperature is contrary to the traditional
vapor–liquid–solid (VLS) growth that the growth rate
usually increases with the increasing temperature due
to the thermally activated behavior. This can be at-
tributed to a decreased supply of In adatoms from
the substrate due to an enhanced competition. The
average diameter of the NW bottom for samples A,
B, and C is measured to be 645, 501, and 270 nm, re-
spectively, suggesting an enhanced radial growth as
the temperature increases. As the NWs become
thicker, the spacing between NWs becomes smaller.
The competition of neighboring NWs for the In spe-
cies on the substrate is enhanced due to an decreased
collection area, resulting in a slower growth rate due
to a decreased supply of In adatoms from the sub-
strate [23].
Figure 2 shows the cross-sectional SEM image of sam-

ple D. Different from the straight NWs in samples A, B,
and C, kink is observed in some of the NWs, resulting
in a change of growth direction. The kink phenomenon
is attributed to a reduced V/III ratio. In the self-
catalyzed InAs NW growth, the In droplet acts as the
catalyst. With decreasing the V/III ratio, the sticking
coefficient of TMIn increases and more In sticks to the

surface. A high In content is expected to lower the
liquid–vapor surface tension and thereby increase the
work of adhesion. When the work of adhesion is high
enough, a small perturbation (e.g., fluctuation of
temperature or gas flow) is sufficient to change the form
of the NW tip. In addition, the low surface energy (111)
sidewalls are favorable for the droplet to wet. Under
these combined conditions, when the faceted structure
forms with a shrinking growth surface, the liquid droplet
is easy to unpin, moving onto a sidewall (111) facet, and
thus to continue to grow, forming a kink [24].

Fig. 1 Cross-sectional SEM images of the InAs NWs from sample
A, B, and C. The scale bars in (a–c) are 100, 200, and 1 μm, respectively
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Figure 3 shows the TEM image of a single NW from
sample C. A large number of twin faults are observed
from the selective area electron diffraction (SAED),
which have been widely reported in self-catalyzed InAs
NWs [25, 26]. The twin faults usually occur with a tran-
sition of external facets during the nucleation formation
and the free energy of the nucleus formation depends on
the contact angle of the liquid droplet with respect to
the solid–vapor facet [27]. Thus, the orientation of each
critical nucleus determines whether a normal or a twin
plane will form. As the energy difference between the
normal and twin nucleus is small, small energy fluctua-
tions during growth could give rise to randomly distrib-
uted twin planes. In this case, the sidewall facet
perpendicular to the growth direction is {112}. {112}
planes have a relatively high surface energy and can be
considered as two {111} layers followed by a “correcting”
step. The angle between the surfaces parallel to the NW

growth direction is 38° (as shown in Fig. 3b), corre-
sponding to {111}A and {111}B surfaces [28]. (The sub-
script “A” and “B” refers to “In” and “As” terminated
surfaces, respectively.)
Figure 4 shows the TEM images of two kinds of NWs

from sample D. Figure 4a shows a NW with an angle of
90° between the root and branch. The orientation of the
branch is determined to be <112> according to the
SAED. Figure 4b shows the high-resolution TEM
(HRTEM) image between the droplet and NW. The
branch exhibits zincblende (ZB) crystal structure despite
several twins parallel with the growth direction of the
branch. The twin formation probably occurs during the
NW nucleation. As the NW continues to grow, the
twins extend down the length of the NW. The twins
form during the nucleation when the NW grows in the
<111> direction and provide preferential addition sites
that subsequently maintain the NW growth in the {112}

Fig. 2 Cross-sectional SEM images of the InAs NWs from sample D. The scale bar is 1 μm

Fig. 3 a Low magnification TEM image of a single NW from sample C. The inset shows the SAED of the NW taken along the <110> zone axis.
b HRTEM image of the NW with twinning defects. The scale bars in a and b are 500 and 10 nm, respectively
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direction. Compared with the twin faults perpendicular
to the growth direction, the twin faults along the growth
direction has smaller carrier scattering which has tiny
influence on the mobility of NWs.
Figures 4c, d shows another kind of NWs from sample

D. The growth direction is determined to be <111> ac-
cording to the SAED. The branch after kinking exhibits
defect-free ZB crystal structure without twins. The kink
angle ranges from 70° to 137°, which has no relationship
with the crystal orientation. This means that the kink is
originating from other perturbation such as the In con-
centration fluctuation due to the surface diffusion rather
than the stacking twins during the nucleation. It should
be noted that the growth orientation of the branch will
not change when the growth time is further prolonged.
It has been reported that the twin defects typically

occurs with a transition of the external facets, and the
transition takes place under the influence of the concen-
tration in the droplet. The As species reach the growth
point only by direct impingement, but the In species
mainly come from direct impingement and surface diffu-
sion from the substrate. In our experiment, as the

growth parameters remain unchanged during the NW
growth, the In species in the droplet from direct im-
pingement is constant, but the In species collected
from the substrate decrease with the NW height.
Thus, the fluctuation of In species from the substrate
contributes to the twin faults in the <111> root.
When the NW grows to a certain height, kink occurs
due to a small perturbation of growth conditions. Al-
though the perturbation remains unclear, a sudden
change of In concentration in the droplet may play
an important role in the kink. That is, In diffusion
from the substrate suddenly decreases, resulting in a
sharp decrease of In atoms in the droplet. After kink-
ing, the diffusion from the substrate becomes negli-
gible and the direct impingement dominates. The
stable supply of In species contributes to the pure
crystal structure of the NW after kinking. The
explanation can be supported by the TEM images in
Fig. 4a, c, in which the NW roots are obviously
tapered while the branch after kinking are uniform in
diameter, suggesting that the diffusion effect is negli-
gible after kinking.

Fig. 4 a Low magnification TEM image of a single NW from sample D. The inset shows the SAED of the NW after kinking taken along the <110>
zone axis. b HRTEM image of the NW. The inset shows the FFT image of the white marked area. The <112> growth direction can be observed in
the FFT image. c Low magnification TEM image of another single NW from sample D. The inset shows the SAED of the NW after kinking taken
along the <110> zone axis. d HRTEM image of the NW. The inset shows the FFT image of the white marked area. The <111> growth direction
can be observed in the FFT image. The scale bars in (a–d) are 500, 20, 500, and 10 nm, respectively
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Conclusions
In conclusion, we demonstrate the self-catalyzed growth
of InAs NWs on InP substrate by MOCVD. At a low V/
III ratio, the NWs exhibit kinking, which is attributed to
a high adhesion due to a large sticking coefficient of
TMIn. The twin faults are dramatically suppressed and
even completely eliminated in the NW branch after
kinking, which is attributed to a stable In supply with a
negligible diffusion effect. The twin-free InAs NWs are
promising for high-performance electronic and photonic
devices.
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